Here is a passage from a good report about scientists who developed a better way to examine free radical damage:
QUOTE: "Oxygen is actually one of the more toxic molecules in the environment," Beckman said. "Breathing 100 percent pure oxygen will destroy your lungs in about three days because it increases the formation of superoxide."
Superoxide is efficiently removed by an enzyme, superoxide dismutase. Antioxidants in food, such as vitamin C and E, are also part of this process. And in healthy animals, including humans, this delicate balancing act can work well and cause few problems. But sometimes the process breaks down and excess levels of superoxide begin to accumulate and lead to a wide variety of degenerative diseases.
Prior to this, there was no direct and accurate way to measure superoxide or its origin from the two places that produce it, the cell's cytosol or mitochondria. Now there is.
With the new system developed at OSU, researchers can use a fluorescent microscope, a fairly standard laboratory tool, to actually see levels of superoxide and observe changes as experiments are performed with living cells.
"If we poison the mitochondria, using something like the pesticides that have been implicated in Parkinson's disease, we can actually see superoxide levels begin to rapidly rise," Beckman said. "You get a similar reaction if a growth factor is added that's implicated in the development of Lou Gehrig's Disease."
The data available from this new technology, Beckman said, are so profound that for some time many in the science community didn't believe it was possible.
"This will become a critical tool in learning how superoxide works in a cell," he said. "I've been studying this for more than 10 years and never thought we would have such a clear and accurate picture of what's going on inside a living cell."
In their research on ALS, for instance, OSU scientists have used the new system to actually see cells eating themselves alive and dying from excess superoxide production. A new compound is in phase one clinical trials that appears to inhibit this process and may ultimately provide a therapy for the disease.
Oxidative stress resulting from mitochondrial dysfunction has already been implicated in neurodegeneration, aging, diabetes and cancer, the researchers said in their report. The new findings could rapidly speed research in all of those fields, they said. UNQUOTE.
Note how they talk about the antioxidant defenses sometimes "breaking down." This can occur if you eat a diet containing the wrong lipids, not just the kind of molecules, but also the way they have been "refined" and they way you cook the food.
Source for the quoted passage: http://www.sciencedaily.com/releases/2006/09/060926104526.htm |