MSN Home  |  My MSN  |  Hotmail
Sign in to Windows Live ID Web Search:   
go to MSNGroups 
Free Forum Hosting
 
Important Announcement Important Announcement
The MSN Groups service will close in February 2009. You can move your group to Multiply, MSN’s partner for online groups. Learn More
Chemistry Corner[email protected] 
  
What's New
  
  Welcome Page  
  About This Site  
  Message Boards  
  General  
  Inorganic  
  Organic  
  Pictures  
  Random  
  FOR ALL  
  Handy Symbols  
  Chemistry Humor  
    
  Documents  
  Chemistry Sites I  
  Chemistry Sites II  
  Chemistry Sites III  
  Organic Sites I  
  Organic Sites II  
  Analytical Sites I  
  Analytical Sites II  
  Lesson Plan Sites  
  Online Problems  
  Names & Formulas  
  Naming Exercises  
  Equations I  
  Equations II  
  Eq. Exercises I  
  Eq. Exercises II  
  The Mole I  
  The Mole II  
  Mole Exercises  
  Stoichiometry  
  Stoich. Exercises  
  More Communities  
  School's Out!  
  _________________  
  Site Map  
  
  
  Tools  
 
General : spectroscopic evaluation of effective nuclear charge
Choose another message board
 
     
Reply
 Message 1 of 2 in Discussion 
From: lackingchemboi  (Original Message)Sent: 4/1/2008 12:29 AM
1. why does the value of Z* 'felt' by an electron depend on its quantum level?
2. what types of (S->S, S->P, S->D, etc) of transitions are allowed?
3. what is the physical significance of the potential energy of the ground state?


First  Previous  2 of 2  Next  Last 
Reply
 Message 2 of 2 in Discussion 
From: MSN Nickname·Steve·Sent: 4/1/2008 9:09 AM
1.  In general, the larger the value of n, the farther the nucleus the electron will be.  As such, this electron will be shielded from the full charge of the nucleus by the effect of the inner electrons.
 
2.  Electronic transitions are governed by a) symmetry and b) change in multiplicity.
 
When a center of symmetry is present, electron transitions between "gerade" (g) and "ungerade" (u) ("even" and ""odd") orbitals are allowed, but gerade to gerade and ungerade to ungerade are forbidden.  This is called the "parity selection rule."
 
u  �?nbsp; g  allowed
g  �?nbsp; u  allowed
 
u  �?nbsp; u  forbidden
g  �?nbsp; g  forbidden

s and d orbitals are gerade.
p orbitals are ungerade.
All wavefunctions in a molecule with a center of symmetry are g or u.

Therefore, s �?p, p �?s, p �?d, and d �?p are allowed,
but s �?s, p �?p, d �?d, s �?d, d �?s are forbidden.

The multiplicity of a state is 2S + 1 where S = Σms.  When S = 0 (all electrons paired) the multiplicity is 1 (a singlet state, also labeled S).  When S = 1 (two unpaired electrons) the multiplicity is 3 (a triplet state, T).  The transition if allowed if there is not a change in multiplicity, and forbidden if there is a change in multiplicity.
 
S  �?nbsp; S  and  T  �?nbsp; T  transitions are allowed,
S  �?nbsp; T  and  T  �?nbsp; S transitions are not allowed.

Remember that "not allowed" more realistically means "not probable" most of the time.  Spin-orbit and vibrational coupling enable forbidden transitions to occur though these transitions are unfavorable otherwise.
 
3.  The ground state has the lowest potential energy.  In diatomic molecules, this would correspond to the optimum bond distance between the atoms.  It would correspond to the most favorable geometric arrangement of the atoms in molecules in general.  In theoretical studies of reaction mechanisms, the "ground state potential energy surface" of the molecules are calculated.
 

I had to go to one of my old textbooks (Physical Methods in Chemistry, by Russell S. Drago) for most of this, as it's been a while since I studied spectroscopy principles!  Are these for a spectroscopy class?  If so, what textbook are you using?  (Just curious.)

Steve