MSN Home  |  My MSN  |  Hotmail
Sign in to Windows Live ID Web Search:   
go to MSNGroups 
Free Forum Hosting
 
Important Announcement Important Announcement
The MSN Groups service will close in February 2009. You can move your group to Multiply, MSN’s partner for online groups. Learn More
Chemistry Corner[email protected] 
  
What's New
  
  Welcome Page  
  About This Site  
  Message Boards  
  General  
  Inorganic  
  Organic  
  Pictures  
  Random  
  FOR ALL  
  Handy Symbols  
  Chemistry Humor  
    
  Documents  
  Chemistry Sites I  
  Chemistry Sites II  
  Chemistry Sites III  
  Organic Sites I  
  Organic Sites II  
  Analytical Sites I  
  Analytical Sites II  
  Lesson Plan Sites  
  Online Problems  
  Names & Formulas  
  Naming Exercises  
  Equations I  
  Equations II  
  Eq. Exercises I  
  Eq. Exercises II  
  The Mole I  
  The Mole II  
  Mole Exercises  
  Stoichiometry  
  Stoich. Exercises  
  More Communities  
  School's Out!  
  _________________  
  Site Map  
  
  
  Tools  
 
Organic : alkanes
Choose another message board
View All Messages
  Prev Message  Next Message       
Reply
 Message 24 of 24 in Discussion 
From: MSN Nickname·Steve·  in response to Message 21Sent: 6/13/2006 7:50 PM
a)   CH3-CH2-CH3 (g)  +  Br2 (l)   -->

This is called a substitution reaction in organic chemistry because the hydrogens in the alkane get replaced or substituted with halogen atoms, one at a time.  If we start with replacing just one hydrogen, there are two possible products, 1-bromopropane and 2-bromopropane, with 2-bromopropane being the major product:

                                                 Br
                                                 |
CH3CH2CH3  +  Br2   ––�?gt;   CH3CHCH3  +  HBr

This kind of selectivity of the product is called regioselectivity in organic chemistry.  The bromine bonds preferentially at one atom or "region" in the propane molecule.  It turns out that the lowest energy reaction pathway (the reaction mechanism) leads to 2-bromopropane in this reaction.
 

b)   C7H16 (l)  +  O2 (g)   -->

Complete combustion of any organic compound containing the elements C, H, and/or O gives only the products CO2 and H2O.  First balance the carbons, then the hydrogens, and lastly the oxygens by putting the necessary coefficient in front of O2.
 

c)   CH3-CH2-CH2-CH3 (g)  +  CH3-CH3 (g)   -->

There shouldn't be any reaction between two alkanes.  In fact alkanes are generally unreactive.  Their major reactions are halogenation (reaction 'a' above) and combustion.  There are alkane "cracking" reactions that can occur between alkane radicals, but as written this does not look like one of those.
 
 
d)          H   H
           |     |     |
      H–C––C––C–H   +   F2 (g)   -->
           |     |     |
          H   H    H

This is just like reaction (a).  The hydrogen atoms will get replaced by fluorine atoms in this case.  A big difference with fluorination, compared to chlorination and bromination, is that reactions of alkanes with F2 are highly exothermic, even explosive, and as a result are difficult to control.  We can give the monofluorinated major product 2-fluoropropane as we did in reaction (a).  Assuming the C–C bonds survive, all of the hydrogens can be replaced with fluorine atoms, giving 1,1,1,2,2,3,3,3-octafluoropropane, or "perfluroropropane" :

          H    H    H                                        F    F    F
           |     |     |                                          |     |     |
      H–C––C––C–H   +   8 F2 (g)   ––�?gt;   F–C––C––C–F   +   8 HF
           |     |     |                                          |     |     |
          H    H    H                                         F    F    F
 
 
The product you choose for fluorinations may depend on how your particular textbook and/or teacher presents them!
 
Steve