MSN Home  |  My MSN  |  Hotmail
Sign in to Windows Live ID Web Search:   
go to MSNGroups 
Free Forum Hosting
 
Important Announcement Important Announcement
The MSN Groups service will close in February 2009. You can move your group to Multiply, MSN’s partner for online groups. Learn More
Chemistry Corner[email protected] 
  
What's New
  
  Welcome Page  
  About This Site  
  Message Boards  
  General  
  Inorganic  
  Organic  
  Pictures  
  Random  
  FOR ALL  
  Handy Symbols  
  Chemistry Humor  
    
  Documents  
  Chemistry Sites I  
  Chemistry Sites II  
  Chemistry Sites III  
  Organic Sites I  
  Organic Sites II  
  Analytical Sites I  
  Analytical Sites II  
  Lesson Plan Sites  
  Online Problems  
  Names & Formulas  
  Naming Exercises  
  Equations I  
  Equations II  
  Eq. Exercises I  
  Eq. Exercises II  
  The Mole I  
  The Mole II  
  Mole Exercises  
  Stoichiometry  
  Stoich. Exercises  
  More Communities  
  School's Out!  
  _________________  
  Site Map  
  
  
  Tools  
 
General : pH of solution in titration
Choose another message board
 
     
Reply
 Message 1 of 8 in Discussion 
From: MSN Nicknamegoldie647  (Original Message)Sent: 3/12/2008 11:13 PM
I'm confused on the following two questions:

1) Calculate the pH of titration of acetic acid by NaOH after adding 15.0 ml, 0.20 M NaOH to 35.0 ml, 0.20 M acetic acid (Ka=1.8x10�?). What is the pH of solution at one-half equivalent and equivalent point?

Would I need to find the initial pH? If so, what does it have to do with the question?

The pH at 1/2 eq point is equal to pka

For the pH at eq point, how do you know which Volume to use, (15.0ml or 35.0 ml)

How can you do a check by looking at the pH values to see if they make sense?

2) Consider the titration of 30.0 ml, 0.1 M NH3 (Kb=1.8x10�?) with 20.0 ml of 0.1 M HCl.
Calculate :
(a) pH of solution in titration
(b) pH at 1/2 equivalent and equivalent point.

What is the pH of solution in titration? Is this the initial pH.

So confused

Thanks


First  Previous  2-8 of 8  Next  Last 
Reply
 Message 2 of 8 in Discussion 
From: MSN Nickname·Steve·Sent: 3/13/2008 2:37 AM
These take a while to work, but there are two main parts to each.  Halfway to tbe equivalence point, pH = pKa, that is right.

I will work the first one as an example:  What is the pH after adding 15 mL of 0.20 M NaOH to 35.0 mL of 0.20 M HC2H3O2?  Once you get the bugs worked out of question 1, question 2 will make more sense (I hope!).

Part I.  Reaction of the acid with the NaOH.

I like to write the reaction with the moles of substances under the formulas so it's easier to tell what's going on.  Since NaOH is a strong base, this reaction will go 100% to products.  We also need to calculate the moles of HC2H3O2 and NaOH that are initially present.

moles of HC2H3O2   =   volume in liters  X  molarity
                              =   0.0350 L  X  0.20 mol/L  =  0.0070 mol

moles of NaOH        =   0.0150 L  X  0.20 mol/L  =  0.0030 mol

 
                 HC2H3O2 (aq)  +  NaOH (aq)   ––�?gt;   NaC2H3O2 (aq)  +  H2O (l)
 
Initially:        0.0070 mol       0.0030 mol                     0                  (solvent)
                    (excess)          (limiting)

After Rxn:     0.0040 mol            0                       0.0030 mol           (solvent)
 

Since NaOH is the limiting reactant, none of it will be left after the reaction.

The amount of the exceess reactant, HC2H3O2, that remains after the reaction is the initial amount minus the amount that reacts.  The moles of HC2H3O2 that react is equal to the moles of NaOH since the reaction is one-to-one.

The moles of NaC2H3O2 that form is equal to the moles of NaOH that react, since NaOH is the limiting reactant and the reaction is one-to-one for these substances as well.
 
 
OK, ready for....

Part II.  Calculation of the pH.

In this case, since we have a weak acid (HC2H3O2) and its conjugate base (C2H3O2�?/SUP> from NaC2H3O2) in the same solution (which by definition is a buffer solution), we can simply plug into the Henderson-Hasselbalch equation to calculate the pH:

pH   =   pKa   +    log { [C2H3O2�?/SUP>] / [HC2H3O2] }

Ordinarily, we would convert moles of substances back to molarity units by dividing the moles by the total volume in liters, which is 0.0500 L.  However, in the Henderson-Hasselbalch equation, you would be dividing the numerator and the denominator by that same total volume.  This results in the volumes canceling.  So, we can simply plug the moles of C2H3O2�?/SUP> and HC2H3O2 into the formula.  We have to be careful about doing that, because normally we want amounts in units of molarity, not moles, when doing pH calculations.

pH   =   –log(1.8 X 10�?)   +   log (0.0030 mol / 0.0040 mol)
       =         4.7447          +                 �?.1249
       =  4.6198 or about 4.62   (I habitually give pH values to two places after the decimal.)
 
Remember, the Henderson-Hasselbalch equation can only be used if both a weak acid and its conjugate base are present.  If only one of these is present, you have to calculate the pH differently (pH of a solution of a weak acid or weak base only).

In this problem, it is hard to tell if the pH "makes sense."  The pH will depend on the amounts of weak acid and weak base present of course, but also on their relative strengths, which is given by the Ka of the weak acid and Kb of the weak base.  Here, the weak acid (acetic acid) is still in excess over the weak base (acetate ion), so we might expect the pH to be less than 7.  Ka for acetic acid, 1.8 X 10�?, is much larger than Kb for the acetate ion, 5.6 X 10�?0.  Therefore, the weak acid "dominates" the solution as well.

As I said, this is a more involved problem involving a number of concepts, but once you get the method down, they can be worked much faster!
 

Try working question 2.  The reaction for Part I is,

NH3 (aq)  +  HCl (aq)   ––�?gt;   NH4Cl (aq)

For the Henderson-Hasselbalch calculation in Part II, the weak acid is ammonium ion, NH4+, and the weak base is ammonia, NH3.  Good luck!

Steve

Reply
 Message 3 of 8 in Discussion 
From: MSN Nicknamegoldie647Sent: 3/13/2008 8:51 PM
Steve,

I did not see where you calculated the pH at equivalence point.

I got pH=8.87

not sure though.

Would there be any need to calculate the initial pH?

Reply
 Message 4 of 8 in Discussion 
From: MSN Nickname·Steve·Sent: 3/13/2008 10:19 PM
That's right, good job.  At the equivalence point, you will have added 35.0 mL of 0.20 M NaOH to the 35.0 mL of 0.20 M acetic acid.  At this point, moles of NaOH = moles of acetic acid.  After they react, there will be 0.0070 mol of sodium acetate in 70.0 mL of solution.

The molarity of the sodium acetate is 0.0070 mol / 0.0700 L  =  0.10 M.  The pH of this solution is 8.87 as you calculated.

You do not need the initial pH of the weak acid for the other calculations.  Sometimes the question specifically asks for the pH when 0, 10, 20 mL, etc., of NaOH solution have been added.  If 0 mL of NaOH is added, the pH will of course be the initial pH.

Steve

Reply
 Message 5 of 8 in Discussion 
From: MSN Nicknamegoldie647Sent: 3/14/2008 2:53 PM
Ok, when you say that at the equivalence point, you will have added 35.0 mL of 0.20 M NaOH to the 35.0 mL of 0.20 M acetic acid, what is exactly happening here? We are titrating the NaOH with the acetic acid? So the NaOH is in the burete and we are matching the volume of it to the volume of the acid in the flask? Not sure.

What does having the same volume have to do with the equivalence point? Because if I use 15.0ml in the calculation I get the same pH value. But I think my theory behind it is wrong. I guess my question is how do you know which volume to use for the equivalence point and how is volume related to it?


Thanks


Reply
 Message 6 of 8 in Discussion 
From: MSN Nickname·Steve·Sent: 3/14/2008 8:19 PM
At the equivalence point, you have added just enough NaOH to completely "neutralize" the acetic acid.  The volumes do not matter; it just so happened that in your example, the molarities were the same which makes the volumes the same at the equivalence point.  At the equivalence point, the moles of added base equals the moles of acid initially present.  VaMa = VbMb.  It does not matter whether you add the base to the acid or the acid to the base, the result at the equivalence point is the same.
 
After the equivalence point is reached, any more NaOH added will not react with anything (unless you have a diprotic acid like H2SO4, which will have two equivalence points in the titration).
 
 
Steve

Reply
 Message 7 of 8 in Discussion 
From: MSN Nicknamegoldie647Sent: 3/16/2008 8:15 PM
What is "neutralize"? Is it when the moles of the base equal the moles of the acid?

Also how do you know when it is at equivalence point?

Thanks

Reply
 Message 8 of 8 in Discussion 
From: MSN Nickname·Steve·Sent: 3/17/2008 12:54 AM
"Neutralize" literally means to make neutral.  The pH of a neutral solution is 7.  For example, if you start with an HCl solution and titrate it with NaOH (the NaOH solution is in the buret), and monitor the pH during the addition of the NaOH, you will get a typical strong acid - strong base titration curve like this:
 
At the equivalence point, just enough moles of NaOH have been added to completely react exactly with the HCl.  At that point, the solution contains only NaCl, and the pH is 7.
 
HCl (aq)  +  NaOH (aq)   ––�?gt;   NaCl (aq)  +  H2O (l)
 
 
If you titrate a weak acid such as acetic acid with NaOH, a similar titration curve results, but at the equivalence point the pH is greater than 7 because the product of this reaction, sodium acetate, is a weak base.
 
 

 

 
HC2H3O2 (aq)  +  NaOH (aq)   ––�?gt;   NaC2H3O2 (aq)  +  H2O (l)
 
Even thought the pH is not 7 at the equivalence point in this case, we still say that we have "neutralized" all of the acetic acid at the equivalence point.  That is, all of the H+ ion coming from the acetic acid has been combined with OH�?/SUP> ion from the base to form water, just as occurs in the reaction of HCl with NaOH.
 
The equivalence point in a titration is accurately determined from the titration curve.  The equivalence point occurs at the volume of added NaOH at the center of the near-vertical region in the graph.  If you are not using a titration curve to find the equivalence point, a few drops of a solution of an indicator such as phenolphthalein is added to the acid solution.  The color change of phenolphthalein occurs at a pH close enough to the actual equivalence point that the error is very small.  In any acid-base titration, the color change of the indicator needs to occur as close to the true equivalence point as possible for the best accuracy.
 
 
Steve

First  Previous  2-8 of 8  Next  Last 
Return to General